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given in Table 1 are for an IBM 9021-720 mainframe 
computer. 

The program is in principle available for distribu- 
tion, but interested parties should consult with the 
author first. 

References 

BRAUN, P. B., HORNSTRA, J. & LEENHOUTS, J. I. (1969). Philips 
Res. Rep. 24, 85-118. 

CROWTHER, R. A. (1972). The Molecular Replacement Method, 
edited by M. G. ROSSMANN, pp. 173--178. New York: Gordon 
and Breach. 

CROWTHER, R. A. & BLOW, D. M. (1967). Acta Cryst. 23, 
544-548. 

FITZGERALD, P. M. D. (1988). J. Appl. Cryst. 21, 273-278. 
HUBER, R. (1965). Acta Cryst. 19, 353-356. 
HtmER, R. (1985). Molecular Replacement. Proc. of the Daresbury 

Study Weekend, Daresbury, February 1985, pp. 58-61. SERC 
Daresbury Laboratory, Warrington, England. 

LATTMAN, E. E. & LOVE, W. E. (1972). Acta Cryst. B26, 1854- 
1857. 

NORDMAN, C. E. & NAKATSU, K. (1963). J. Am Chem. Soc. 85, 
353. 

ROSSMANN, M. G. & BLOW, D. M. (1962). Acta Cryst. 15, 24-31. 
TAKANO, T. (1977). J. Mol. Biol. 110, 537-568. 
TEN EYCK, L. F. (1973). Acta Cryst. A29, 183-191. 

Acta Cryst. (1994). A50, 72-85 

Space Groups of Trigonal and Hexagonal Quasiperiodic Crystals of Rank 4 

BY RON LIFSHITZ AND N. DAVID MERMIN 

Laboratory of  Atomic and Solid State Physics, Cornell University, Ithaca, N Y  14853-2501, USA 

(Received 13 January 1993; accepted 21 June 1993) 

Abstract 

As a pedagogical illustration of the Fourier-space 
approach to the crystallography of quasiperiodic 
crystals, a simple derivation is given of the space- 
group classification scheme for hexagonal and 
trigonal quasiperiodic crystals of rank 4. The 
categories, which can be directly inferred from the 
Fourier-space forms of the hexagonal and trigonal 
space groups for periodic crystals, describe general 
hexagonal or trigonal quasiperiodic crystals of rank 
4, which include but are not limited to modulated 
crystals and intergrowth compounds. When these 
general categories are applied to the special case of 
modulated crystals, it is useful to present them in 
ways that emphasize each of the subsets of Bragg 
peaks that can serve as distinct lattices of main 
reflections. These different settings of the general 
rank-4 space groups correspond precisely to the 
superspace-group description of (3+ 1) modulated 
crystals given by de Wolff, Jannsen & Janner [Acta 
Cryst. (1981), A37, 625-636]. As a demonstration of 
the power of the Fourier-space approach, the space 
groups for hexagonal and trigonal quasiperiodic 
crystals of arbitrary finite rank are derived in a 
companion paper [Lifshitz & Mermin (1994). Acta 
Cryst. A50, 85-97]. 

• I. Introduction 

Crystals used to be defined as materials periodic on 
the atomic scale. As such, they were classified by 
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their space groups - subgroups of the full Euclidean 
group that bring a periodic density into coincidence 
with itself. Because of the growing numbers and 
varieties of quasiperiodic crystals, crystals have been 
redefined* as materials whose diffraction patterns 
contain Bragg peaks, thereby shifting the essential 
attribute of crystallinity from position space to 
Fourier space. A corresponding shift in the crystal- 
lographic classification scheme, proposed thirty years 
ago by Bienenstock & Ewald (1962), has not, how- 
ever, been widely accepted, probably because they 
advocated Fourier-space crystallography before 
quasiperiodic crystals had become of major interest, 
when there was no strong incentive to make the shift. 
Now there is. 

The conventional extension of the classification 
scheme to quasiperiodic materials, developed and 
used by de Wolff, Janssen & Janner (1981) (hence- 
forth JJdW)~ to find the 'superspace groups' of 
(3 + 1) incommensurately modulated crystals, retains 
the old criterion of periodicity as the starting point 
for a crystallographic classification scheme and must 
therefore treat quasiperiodic structures as three- 
dimensional sections of structures periodic in a 
higher-dimensional superspace. The need for such a 
maneuver is avoided by the Fourier-space classifi- 

* Statement of 'terms of reference' of the ad interim Commis- 
sion on Aperiodic Crystals of the International Union of Crystal- 
lography. 

t See also Yamamoto, Janssen, Janner & de Wolff (1985) and 
Janssen, Janner, Looijenga-Vos & de Wolff (1992). 
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cation scheme of Rokhsar, Wright & Mermin 
(1988a,b), who extended Bienenstock & Ewald's 
Fourier-space crystallography of periodic crystals to 
a symmetry-based classification scheme in three- 
dimensional Fourier space that grows naturally out 
of the broader definition of crystals as materials with 
diffraction patterns of sharp Bragg peaks. 

Aside from being more in keeping with the new 
definition of crystallinity, the Fourier-space 
approach to the classification of crystals has two 
main advantages over the conventional superspace 
approach: 

(1) Because periodicity plays no role, there is no 
need to construct the classification in superspace. 
The same approach in three dimensions that works 
for ordinary periodic crystals continues to be 
applicable to quasiperiodic crystals. The artificiality 
and nonuniqueness of the superspace embedding is 
avoided and there is no need to replace the powerful 
tool of three-dimensional geometric intuition by the 
algebraic abstractions underlying the extension to 
higher dimensions of the conventional crystal- 
lography of periodic materials.* 

(2) Unlike the superspace scheme, the Fourier- 
space approach does not single out a special three- 
dimensional lattice of main reflections as a starting 
point for an extension to higher dimensions. Conse- 
quently, Fourier-space crystallography has no built- 
in bias toward modulated crystals. By eliminating 
this bias, one achieves a substantially simpler and 
more broadly applicable classification for arbitrary 
quasiperiodic crystals, from which the conventional 
descriptions of the subcategory of modulated crystals 
can straightforwardly be recovered as special cases, 
most naturally viewed as settings of the general 
categories. 

The key to the reformulation of crystallography in 
a manner that embraces quasiperiodic as well as 
periodic materials is to redefine the point group of a 
material as the subset of operations from 0(3) that 
take the density into one that is indistinguishable 
from what it was. Two densities are said to be 
indistinguishable if they have the same positionally 
averaged n-point autocorrelation functions for all n - 
i.e. if any substructure on any scale that occurs in 
one occurs in the other with the same frequency. 
From a practical point of view, any two densities 
related in this way are literally indistinguishable 
because any finite subregion of one is just as likely to 
be a subregion of the other and all laboratory speci- 
mens do indeed come in finite chunks. 

* We stress at the start that we are not arguing that superspace 
is of no use to crystallographers: it has, for example, proved quite 
useful in suggesting models for the three-dimensional atomic 
structure. Our point is only that superspace unnecessarily compli- 
cates the construction and application of the crystallographic 
classification scheme. 

Formally, densities p and p' are indistinguishable 
if 

(p ( r , - r ) . . .p ( r , , - r ) )  = (p ' ( r~- r ) . . .p ' ( rn- r ) )  (1) 

for all n, where the angular brackets ( )  denote a 
uniform average over all positions r. If a material is 
periodic, one can prove that indistinguishability 
reduces to identity to within a translation. One can 
then combine point-group operations with trans- 
lations to recover the traditional space groups of 
periodic materials, containing operations that leave 
the density identical to what it was. But indis- 
tinguishable quasiperiodic densities need not be so 
simply related in real space.* However, the condition 
(1) of indistinguishability does acquire a very simple 
form in Fourier space (described below in §II), 
which applies equally well to periodic or quasi- 
periodic crystals. 

One is thus led naturally to a reformulation of 
crystallography grounded in three-dimensional 
Fourier space. The new formulation is based on the 
distinct sets of phases acquired by the density 
Fourier coefficients associated with the Bragg peaks 
under the action of point-group operations and is 
directly applicable to either periodic or quasiperiodic 
crystals. In the periodic case, the phases happen to 
be related to real-space translations d in the familiar 
fashion, 2rrq~(k) = k" d, but this plays no role in their 
determination. In the quasiperiodic case, the phases 
provide the basis for a generalization of the space- 
group categories, even though they are no longer 
related to translations in three-dimensional position 
space.t The Fourier-space approach was recently 
used to give a compact derivation of all 230 crystal- 
lographic space groups as special cases of a more 
general derivation of the space groups of icosahedral 
and axial quasicrystals.:t: 

Fourier-space crystallography starts with the set of 
all integral linear combinations of the wave vectors 
at which the density has nonvanishing Fourier 
coefficients, as determined by the Bragg peaks. In the 
periodic case, this set is just the reciprocal lattice 
and, in the quasiperiodic case, we continue to call it 
the lattice,§ the qualifying 'reciprocal' no longer 
being necessary since quasiperiodic structures have 

* In the conventional terminology of quasiperiodic crystals, 
indistinguishable densities are said to differ by a translation 
and/or a 'phason'. 

t We follow the conventional practice of using the term 'space 
groups' for the categories based on point groups and phases, even 
though they are related to subgroups of E(3) only in the periodic 
case. 

:1: See Rabson, Mermin, Rokhsar & Wright (1991) and Mermin 
(1992a). We refer the reader to the second of these for an 
exposition of Fourier-space crystallography more detailed than 
the summary that follows. 

§ In the superspace approach to quasiperiodic crystals, the term 
'Z module' is used instead. 
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no direct lattice of real-space translations with which 
it might be confused. By the rank of a lattice we 
mean the smallest number of wave vectors whose 
integral linear combinations include all lattice 
vectors - i.e. the smallest number of vectors needed 
to index the diffraction pattern. 

Elsewhere, we have defined and enumerated the 
Bravais classes of such lattices for the simplest quasi- 
periodic crystals with conventional crystallographic 
point groups, namely the rank-6 Bravais classes in 
the cubic system and the rank-4 Bravais classes in 
any of the other six crystal systems (Mermin & 
Lifshitz, 1992). Our classification differs from the 
JJdW classification of (3 + 1) (or 3 + 3 cubic) incom- 
mensurately modulated crystals (Janner, Janssen & 
de Wolff, 1983; Janssen et al., 1992) in having many 
fewer Bravais classes. This is because the JJdW 
classification scheme in (3+d)-dimensional super- 
space is designed for modulated crystals. A three- 
dimensional sublattice associated with strong Bragg 
peaks - the lattice of main reflections associated with 
the unmodulated periodic crystal - plays a special 
role, the remaining weaker satellite peaks associated 
with the modulations being accommodated by the 
additional superspace dimensions. Consequently, a 
particular lattice of rank bigger than 3 can be associ- 
ated with more than one Bravais class in the JJdW 
scheme if that lattice has rank-3 sublattices from 
distinct rank-3 Bravais classes. 

There are two primary reasons not to build the 
choices of lattices of main reflections into the Bravais 
classes and space groups. (a) By not doing so, we 
arrive at a general classification scheme for diffrac- 
tion patterns with a crystallographic point-group 
symmetry spanned by more than three wave vectors, 
which applies whether or not the material happens to 
be a modulated crystal. When it is, the more detailed 
categories for modulated crystals can be straight- 
forwardly recovered as different 'settings' of the 
general ones, depending on which rank-3 sublattice 
contains the main reflections. (b) By not building 
into the foundations of the scheme this finer distinc- 
tion, based on features of Bragg-peak intensities 
unrelated to symmetry, one substantially simplifies 
the derivation and description of the space groups of 
quasiperiodic materials, making their relation to the 
ordinary space groups of three-dimensional periodic 
crystals quite transparent. 

It is our purpose in this paper to illustrate the 
simplicity of the general scheme. We shall show, as a 
pedagogical example, how to construct the hex- 
agonal and trigonal rank-4 space groups through a 
simple examination of the Fourier-space description 
of the ordinary periodic trigonal and hexagonal 
space groups. We shall then show explicitly how the 
classification of modulated crystals emerges from the 
general case when the general categories are 

described so as to emphasize a particular rank-3 
sublattice of main reflections. We begin, in § II, by 
summarizing the Fourier-space procedure for the 
enumeration of space groups, describing the connec- 
tion between space groups and phases. In § III, we 
give an elementary derivation of the trigonal and 
hexagonal rank-4 Bravais classes.* In § IV, we give 
the Fourier-space forms of the ordinary space groups 
for periodic crystals in the hexagonal and trigonal 
systems. In § V, we show how the relevant phases for 
rank-4 hexagonal or trigonal quasiperiodic crystals 
can be read off directly from the phases for hex- 
agonal and trigonal periodic crystals. In §VI, we 
extract from those phases the hexagonal and trigonal 
rank-4 space groups and show how the conventional 
categories for modulated crystals, previously derived 
by JJdW, can be recovered as different settings of 
those space groups that emphasize different rank-3 
sublattices of main reflections. In § VII, we review the 
merits of the Fourier-space approach in the light of 
the analysis of the preceding sections. The complete 
specifications of the hexagonal and trigonal space 
groups of rank 4, along with their (3 + 1) settings for 
modulated crystals, are summarized in Tables 5-7. 

In a companion paper (Lifshitz & Mermin, 1994), 
we demonstrate the power of the Fourier-space 
approach by enumerating the Bravais classes and 
space groups for trigonal and hexagonal lattices of 
arbitrary finite rank. 

II. Constructing space groups in Fourier space 

The Fourier transform of the condition (1) that the 
densities p and p'  are indistinguishable gives an 
equivalent condition that the product of the density 
Fourier coefficients p(k) over any set of wave vectors 
summing to zero should agree with the correspond- 
ing product for p'.  This in turn leads to the condition 
that p and p' are indistinguishable if and only if their 
density Fourier coefficients are related byt  

p'(k) = exp [2zrix(k)Jp(k), (2) 

where X, called a gauge function, is linear modulo an 
integer over the lattice of wave vectors.~ Indis- 

* This simplifies the more elaborate derivation we gave in 
Mermin & Lifshitz (1992). 

% That p(k) and p'(k) must differ by at most a phase follows 
from the identity of the two-point correlation functions; that those 
phases must be linear on the lattice follows from the indentity of 
the three-point correlation functions; this is then enough to guar- 
antee the identity of the n-point correlation functions. For details 
see Mermin (1992a). 

:~ Linearity on the lattice means only that x(k~ - k2) - x(k~) - 
x(k2) whenever k~, k2 and k~- k2 are in the lattice, where ' - '  
indicates equality modulo an integer. Note that only when the 
rank of the lattice is 3 can one always extend X to a function linear 
on all of continuous k space. 
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tinguishable densities are said to be gauge- 
equivalent.* 

Because the point group is defined to leave the 
density indistinguishable, we can associate with each 
point-group operation g a gauge function @g(k), 
called a phase function, which relates p(gk) and p(k): 

p(gk) = exp [27ri@g(k)]p(k). (3) 

The space group of a material in the Fourier-space 
approach is specified by its point group and its phase 
functions. 

Two sets of phase functions, @ and q0', that 
describe indistinguishable densities p and p', should 
clearly be associated with the same space group. It 
follows from (2) and (3) that two such sets must be 
related by 

@g(k) = @g(k) + x([g-  1]k) (4) 

for every g in the point group and every k in the 
lattice. We call @ and @' gauge-equivalent phase 
functions and (4) a gauge transformation. Note that 
since 2"(0)- 0 if gk = k then the value of @g(k) is 
gauge-invariant. 

The major part of enumerating the space groups 
for a given point group consists of finding the fami- 
lies of gauge-equivalent phase functions. We can 
specify the families by picking one representative for 
each one, selected by an appropriate choice of gauge 
to have a conveniently simple form. Because of the 
linearity of the phase functions, they need only be 
given for a set of primitive lattice-generating vec- 
tors.t Since p([gh]k)= p(g[hk]), it follows from (3) 
that the phase function for the product of two 
point-group operations can be constructed out of the 
phase functions for the individual operations by the 
rule 

@gh(k) -- qOg(hk) + qOh(k), (5) 

called the group-compatibilitycondition. 
Thus, each family of gauge-equivalent phase func- 

tions is entirely specified by a finite set of phases: the 
values of a representative member of the family, 
given at a set of primitives lattice-generating vectors 
and for a set of operations that generate the point 
group. The point-group generating relations impose, 

through the group-compatibility condition (5), a set 
of constraints on these phases that ensures they have 
a unique value for any point-group operation, 
independent of how that operation is expressed in 
terms of the generating operations.* To determine 
the gauge-equivalence classes of phase functions, we 
therefore choose a set of primitive generating vectors 
for the lattice and a set of generators for the point 
group. We apply the group-compatibility condition 
to the point-group generating relations to produce a 
set of constraints on the phases associated with those 
lattice-generating vectors and point-group genera- 
tors. With a judicious choice of gauge, we extract 
from these constraints a unique representative of 
each of the possible classes of gauge-equivalent phase 
functions. 

The remaining part of the space-group classifi- 
cation is merely a matter of simplifying the book- 
keeping by grouping together different gauge- 
equivalence classes, which ought to be identified on 
other grounds.]" A useful example to keep in mind is 
the orthorhombic system of periodic crystals, in 
which space groups that differ only in the roles 
played by the a, b or c axes are not distinguished, 
even though their phase functions are not gauge- 
equivalent.$ Such further identifications arise when 
there is an operation s not in the point group of the 
material that acts linearly on the lattice L of wave- 
vectors, leaving it invariant, in such a way that g ~  
sgs-' continues to describe the action of the point 
group on the lattice. Materials characterized by 
phase functions 

qbg(k) = ~sgs-,(sk) (6) 

cannot be sensibly distinguished on grounds of sym- 
metry from those classified by phase functions ~g(k); 
therefore, q~' and q0 should be grouped in the same 
class. 

Operations s that are in the point group G have 
precisely this property, but it is an instructive exer- 
cise to show directly from (5) that, for such s, q~' and 

are already gauge-equivalent. If s is not an element 
of the point group G, then the two classes will not, in 
general, be gauge-equivalent. In the interests of sim- 

* Nothing deep is intended by this terminology. It is motivated 
by the resemblance to a gauge transformation in electrodynamics, 
which affects no physical properties but alters the phase of  a 
quantum-mechanical wave function. 

t A smallest set of  wave vectors all of  whose integral linear 
combinations give the lattice and nothing else. 

:[: We must use primitive lattice-generating vectors because the 
phase functions may not be defined on a set of  nonprimitive 
generating vectors, at least some of  which are not in the lattice. 

* These constraints are the generalizations to quasiperiodic 
materials of  the Frobenius congruences in the space-group 
description of  periodic materials. 

t Although the grounds for this further identification can be 
stated quite precisely, whether one chooses to make it or not can 
be a matter of  convention. 

1: Although they are not distinguished as space groups, it can be 
very useful to distinguish them as distinct settings of the same 
space group. 
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plicity, it is then usual ly  desirable  to m a k e  a fu r the r  
identif icat ion.* 

In the per iodic  case, s can  be a r o t a t i o n t  or  an  
e lement  o f  0 ( 3 )  combined  with a rescal ing o f  the 
pr imit ive la t t ice-generat ing vectors.$ In the quasi-  
per iodic  case, s can  be an isotropic  rescaling o f  the 
entire lattrice,§ an  isotropic  rescaling o f  a sublat t ice~ 
or, in the case o f  the r ank-4  quas iper iodic  crystals  
cons idered  below, independen t  rescalings o f  cer ta in  
la t t ice-genera t ing vectors.  Because rescalings are 
of ten ( though  not  a lways)  a pa r t  o f  the t r a n s f o r m a -  
t ion s, two classes o f  gauge-equiva len t  phase  func- 
t ions tha t  are  fu r ther  identified in this m a n n e r  are 
said to be scale-equivalent. 

The classes o f  phase  funct ions  under  gauge  
equivalence a n d  scale equivalence co r re spond  pre- 
cisely to the space g roups  in the per iodic  case and  
const i tu te  the extension o f  the space-group  classifi- 
ca t ion  scheme to the general  quas iper iodic  case. 

As  we shall  see below, in the hexagona l  and  
t r igonal  cases, scale equivalence o f  the r ank-4  gauge-  
equivalence classes can  arise f rom the existence o f  
two pr imi t ive  genera t ing  vectors  with i ncommen-  
sura te  c o m p o n e n t s  a long  the direct ion ~ o f  the three- 
or  sixfold axis. There  is then a f r eedom to choose  
o ther  integral ly  independen t  pairs  o f  vectors  with 
c o m p o n e n t s  a long  ~ as genera tors ,  wi thou t  in any  
way  al ter ing the way  in which the poin t  g roup  acts 
on the genera t ing  v e c t o r s . * * t t  The  opera t ions  s 

* For example, if the point group is noncentrosymmetric, then 
the inversion is such an operation s. Whether or not one makes 
the corresponding identification of gauge-equivalence classes cor- 
responds in the periodic case to whether or not one distinguishes. 
between enantiomorphic pairs of space groups, counting 230 or 
219 distinct types. In this case, the grounds for not making the 
further distinction are these: if s is a proper rotation, one can 
interpolate between the materials with the two different gauge- 
equivalence classes without at any step altering either the point 
group G or (in the quasiperiodic case) the rank of the lattice. But, 
if s is an improper rotation, one cannot. 

t For example, the space group P~3 is associated with two 
distinct gauge-equivalence classes. Here, G is a tetrahedral point 
group and the operation s providing the scale equivalence is a 90 ° 
rotation (see Mermin, 1992a, Table VIII, p. 23). This is the only 
example in the rank-3 cubic system of a further scale equivalence 
between distinct gauge-equivalence classes. 

:~ In the orthorhombic system, s can be a 90 ° rotation about any 
of three orthogonal directions combined with an anisotropic 
rescaling to reproduce the original lattice. This leads us to view as 
different settings of a single space group such distinct gauge- 
equivalence classes as Pamrn, Pmbm and Pmmc. The ortho- 
rhombic system has many such examples. The distinct gauge- 
equivalence classes making up a single orthorhombic space group 
are just the different settings of that space group. 

§ As in the case of icosahedral quasicrystals. See Rokshar, 
Wright & Mermin (1988b) or Mermin (1992a). 

¶ As in the case of axial quasicrystals. See Rabson, Mermin, 
Rokhsar & Wright (1991). 

** Mermin & Lifshitz (1992) called this a reindexing trans- 
formation. 

"["[" Such a change of basis can also be viewed as the end point of 
an interpolating family of operations that independently rescale 
the z components of both vectors without at any stage altering 
either the point group or the rank. 

re levant  to scale equivalence are the l inear  
t r a n s f o r m a t i o n s  connec t ing  two such pairs  o f  gener-  
a t ing vectors.  The  sole difference between the space 
g roups  for  general  r ank-4  t r igonal  crystals  and  their  
( 3 +  1) sett ings for  m o d u l a t e d  crystals  s tems f rom 
one addi t iona l  conven t ion  in the m o d u l a t e d  case: 
tha t  the lattice o f  main  reflections should rerfiain 
invar ian t  unde r  t r a n s f o r m a t i o n s  s used to establ ish 
scale equivalence.* 

III. The hexagonal and trigonal rank-4 Bravais 
classes 

Periodic crystals  have  two Bravais  classes o f  rank-3  
lattices with a unique  axis o f  six- or  threefold  sym- 
metry.  We review the der iva t ion  o f  this fact  in the 
periodic case, since essentially the same a r g u m e n t  
works  for  the Bravais  classes o f  r ank-4  lattices o f  
quas iper iodic  crystals  with such axes. 

It fol lows f rom the existence o f  a threefold  axis 
tha t  any  such rank-3  lattice mus t  con ta in  a two-  
d imens iona l  ( ' hor izon ta l ' )  t r i angu la r  sublat t ice o f  
vectors  pe rpend icu la r  to the ( 'vert ical ' )  threefold  
axis. We genera te  the t r i angu la r  sublat t ice with two 
primit ive vectors,  a and  b, o f  equal  length,  separa ted  
by 120 °. I f  the third genera t ing  vec tor  c is paral lel  to 
the threefold  axis, we have  a lattice o f  the hexagona l  
P ( 'pr imit ive ' )  type with a sixfold axis. The  poin t  
g roup  o f  such a lattice is 7 - ~ 6  2 2 = 6 / m m m . t  We call c 
a vertical stacking vector because  the P latt ice can  be 
viewed as a vertical  s tacking  o f  hor izon ta l  p lanes  
con ta in ing  two-d imens iona l  t r i angu la r  lattices. I f  the 
third genera t ing  vector  has bo th  a vertical com-  
ponen t  c and  a nonzero  hor izonta l  c o m p o n e n t  h, 
then the planes o f  t r i angu la r  lattices are s tacked with 
a staggered stacking vector,'~ 

Cs = c + h. (7) 

Because cs mus t  differ f rom its 120 ° ro ta t ion  by a 
vector  in the hor izon ta l  sublatt ice,  one easily shows 
that ,  to within a hor izonta l  lattice vector,  there are 
jus t  two choices for  the hor izonta l  shift: 

h =  ___(~a + ~b). (8) 

* The superspace approach does not explicitly distinguish 
between gauge equivalence and scale equivalence and imposes this 
additional convention at the start of its analysis. In the Fourier- 
space approach, the determination of gauge-equivalence classes is 
simple because it is unencumbered by any such constraints 
associated with scale equivalence. The further identifications of 
gauge-equivalence classes on the basis of scale equivalence (with 
whatever constraints one wishes to impose on the allowed 
transformations s) are easily applied to the gauge-equivalence 
classes after those classes have been enumerated. 

t When applied to lattices, the term ~point group' has its older 
meaning: a set of operations from 0(3) that leave the lattice 
invariant applied about the origin of Fourier space. 

$ Vertical and staggered stackings of two-dimensional lattices 
were used by Mermin, Rabson, Rokhsar & Wright (1990) to 
enumerate the Bravais classes of standard axial quasicrystals. 
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Table  1. The two rank-4 hexagonal and trigonal Brava& classes 

The Bravais classes are given with their corresponding point groups and their (3 + 1) settings used to describe modulated crystals. The 
JJdW symbols for the settings are given in the last column. This table is extended to a larger table by Lifshitz & Mermin (1994), who 
discuss the case of arbitrary rank and explicitly list all hexagonal and trigonal Bravais classes up to rank 7 together with their settings 
associated with different choices of rank-3 sublattices of main reflections. 

Bravais Class Point Group (3-1-1) Settings JJdW Symbol 

SV [R + 1] :]m R, P P~m(O07), P31m(~7)- ,1 

V V  [P + 1] 6/mmm P P6/mmm(O07) 

These choices are re la ted  by a ro t a t ion  o f  the whole  
latt ice by 180 ° a n d  are  therefore  equivalent .  There  is, 
thus,  a un ique  type o f  s taggered  s tacking,  which 
gives a latt ice o f  the R ( ' r h o m b o h e d r a l ' )  type. The 
hor izon ta l  c o m p o n e n t  o f  cs reduces  the s y m m e t r y  o f  
the R lattice to threefold,  with poin t  g r o u p  3~, = 3m. 

In the r ank-4  quas iper iod ic  case, jus t  as in the 
rank-3  per iodic  case, one establ ishes tha t  any  such 
latt ice mus t  con ta in  a two-d imens iona l  t r i angu la r  
sublat t ice pe rpend icu la r  to the threefold  axis so we 
can aga in  use a and  b as two of  the four  lattice- 
genera t ing  vectors .*  F o r  the lattice to be o f  r a n k  4, 
the two remain ing  genera t ing  vectors  mus t  bo th  have  
nonzero  i n c o m m e n s u r a t e  c o m p o n e n t s  paral lel  to the 
threefold  axis, so we have  two s tacking  vectors  
instead o f  one. As  in the rank-3  case, since each 
s tacking  vector  mus t  differ  f rom its 120 ° ro ta t ion  by 
a vector  in the hor izon ta l  sublat t ice,  the hor izon ta l  
c o m p o n e n t  o f  each can aga in  be t aken  to be ei ther  0 
or  +-[~a + Jb]. Thus ,  to e n u m e r a t e  the t r igonal  and  
hexagona l  r ank-4  Bravais  classes, we need only 
examine  the dif ferent  possibili t ies for  the hor izon ta l  
c o m p o n e n t s  o f  the two s tacking  vectors.  

W h e n  bo th  s tack ing  vectors  are vertical,  we have  a 
vert ical-vert ical  lattice, which is a m e m b e r  o f  the VV 
(or V 2) Bravais  c lass . t  W h e n  one s tacking  vector  is 
vertical  and  the o the r  has  a nonzero  hor izon ta l  
c o m p o n e n t ,  we have  a s taggered-ver t ica l  latt ice 
which is a m e m b e r  o f  the S V  Bravais  class.$ As  in 
the per iodic  case, the sixfold s y m m e t r y  o f  the two- 
d imens iona l  t r i angu la r  latt ice is reduced to threefold  

* When the rank is 5 or higher there can be more than one 
two-dimensional sublattice. 

t This Bravais class is called 'hexagonal P+ 1' by Mermin & 
Lifshitz (1992), but we use here the name VV that generalizes to 
the case of arbitrary rank (see Lifshitz & Mermin, 1994). The VV 
Bravais class corresponds to a unique Bravais class in the JJdW 
classification of modulated crystals: P6/rnrnm(OOy). 

I: The SV lattice has rank-3 sublattices from the two different 
rank-3 Bravais classes; one is an R sublattice generated by a, b and 
the staggered stacking vector and the other is a P sublattice 
generated by a, b and the vertical stacking vector. In Mermin & 
Lifshitz (1992), this Bravais class is called 'trigonal R + 1', which is 
biased towards the first of these settings. We use SV to eliminate 
this bias and to be compatible with the generalization to arbitrary 
rank in Lifshitz & Mermin (1994). In the JJdW classification of 
modulated crystals, the two settings of the SV lattices are treated 

- -  I 1  as distinct Bravais classes: R 3m(00y) and P 3 lm(g.~ y). 

by the existence o f  a s taggered  s tack ing  vector .  Also  
as in the per iodic  case, it does  no t  m a t t e r  which o f  
the two possible nonze ro  hor izon ta l  c o m p o n e n t s  in 
(8) is t aken  for  the s taggered  s tack ing  vector.  

A th i rd  possibi l i ty migh t  a p p e a r  to arise when  
bo th  s tack ing  vectors  are s taggered.  But,  if the two 
s tacking  vectors  have  the same hor izon ta l  com-  
ponen t  h, then we can re-express  the latt ice in the S V  
fo rm by replac ing one  o f  them by the difference o f  
the two,  which  is a vert ical  s tack ing  vector;  if  the  
s tacking  vectors  have  hor izon ta l  c o m p o n e n t s  tha t  
differ  in sign, then we can replace one o f  the stag- 
gered s tack ing  vectors  by the sum of  the two. Thus ,  
the SS  case is equiva len t  to the S V  case and  is no t  a 
dist inct  Bravais  class o f  its own.*  

The t r igonal  and  hexagona l  r ank -4  Bravais  classes 
are s u m m a r i z e d  in Table  1 toge ther  with their  rela- 
t ion to the J J d W  Bravais  classes o f  m o d u l a t e d  
crystals.  

IV. Hexagonal and trigonal rank-3 space groups in 
Fourier space 

We first s u m m a r i z e  the po in t  g roups  a n d  their  gener-  
a to rs  in the hexagona l  and  t r igonal  systems and  then 
give the phases  tha t  specify the Four ie r - space  fo rms  
o f  the space g roups  o f  o rd ina ry  per iodic  c rys ta l s . t  

A. The point groups and their generators 

These are listed in Table  2. The  gene ra to r s  are an  
n-fold ro ta t ion  r (where  n is six or  three),  an n-fold 

* In the JJdW classification of modulated crystals, SS lattices 
are also in the same Bravais class with SV lattices [taken in the 
R3m(OOy) setting], since the JJdW scheme permits the stacking 
vector describing the modulations to be redefined modulo a 
primitive vector from the lattice of main reflections (but forbids 
the stacking vector from the lattice of main reflections to be 
redefined modulo the stacking vector associated with the modula- 
tions). 

t The space groups are derived in Fourier space, as part of a 
more general derivation for axial quasicrystals of the trigonal type 
(rotational symmetry n a power of an odd prime) or hexagonal 
type (n twice a power of an odd prime), in Rabson, Mermin, 
Rokhsar & Wright (1991). The phase functions that specify the 
Fourier-space forms can also be straightforwardly extracted from 
the more conventional description in International Tables for 
Crystallography (1992), as noted below. 
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roto-inversion ? = ir (where i is the three-dimensional  
inversion), a horizontal  mirror  h whose invariant  
plane is perpendicular  to the n-fold axis, a vertical 
mirror  m whose invariant  plane includes the n-fold 
axis and a twofold (dihedral) axis d perpendicular  to 
the n-fold axis.* If a lattice is produced by vertically 
stacking two-dimensional  t r iangular  lattices, it can 
be associated with point  groups which have either 
six- or threefold rotation symmetry.  If  a lattice has 
a staggered stacking vector, the associated point  
groups can only have threefold rotation symmetry.  

B. The hexagonal and trigonal space groups for 
periodic crystals 

Rabson,  Mermin,  Rokhsar  & Wright  (1991) 
(henceforth R M R W )  show that  there is always a 
gauge (a choice of  real-space origin in the periodic 
case) in which all phase functions are zero on the 
two-dimensional  t r iangular  sublattice and in which 
the only possible nonzero phase functions for the 
point-group generators in Table 2 are those associ- 
ated with the generators r and m. The classes of  
phase functions can therefore be specified by at most  
two phases: the values of  ~r and q~,, at the stacking 
vector. These depend on whether the stacking vector 
is vertical or staggered and are summarized in Table 
3 for a vertical stacking vector (P lattice) and in 
Table 4 for a staggered stacking vector (R lattice). 

Both tables list, for each point  group, the possible 
values of  the nontrivial  phase functions at the 
stacking vector. They compactly summarize  all the 
gauge-equivalence classes of  phase functions for the 
hexagonal  and trigonal point  groups in the periodic 
case. ? 

These gauge-equivalence classes correspond pre- 
cisely (for reasons noted below) to the 52 hexagonal  
and trigonal space groups for periodic crystals. To 
recognize that they contain nothing but familiar  
information,  note that in the conventional  nomencla-  
ture of  crystal lography the tables simply specify the 
possibility of  having a glide plane (qb m = ~, which 
turns the m into a c in the space-group symbol) 
and/or  a screw axis (~r ~ 0, which adds an appro- 
priate subscript to the 6 or the 3). 

Given the gauge-equivalence classes, we arrive at 
the space groups themselves by el iminating possible 

* On the hexagonal P lattice, the invariant planes of the vertical 
mirrors or the axes of the twofold rotations can be oriented either 
along or between vectors of the sixfold star formed by the 
generating vectors of the triangular horizontal sublattice and their 
negatives. On the trigonal R lattice, vertical mirrors must be 
between star vectors and twofold axes must be along them. 

"~ To confirm that distinct phases correspond to distinct gauge- 
equivalence classes of phase functions, note that in every case the 
phases are given at a vector that is invariant under the corre- 
sponding point-group generator. They are therefore unaltered by a 
gauge transformation (4). 

Table 2. Point groups of  the hexagonal and trigonal 
systems 

All point groups are compatible with the hexagonal P or P+ 1 
(VV) lattices, giving in either case a total of twelve point groups, 
four of which (62m, 3m, 3m and 32) can be oriented in two distinct 
ways on the hexagonal lattice. Only the point groups with three- 
fold symmetry are compatible with the trigonal R or R + 1 (SV) 
lattices, giving in either case a total of five point groups, each with 
a unique orientation. 

Generators  Hexagona l  Trigonal  

. .  

~, m 62m :3m 

r 6 3 

r, m 6mm 3m 

r, d 622 32 

v, h 61m 

r, h, m 6/mmm 

redundancies in description arising from the scale 
equivalence of distinct gauge-equivalence classes. 
One can verify from Tables 3 and 4 that the only 
operations s not in the point  group that can leave the 
lattice invariant  and connect different gauge- 
equivalence classes through (6) are improper  opera- 
tions that can do the trick for some of  the three- and 
sixfold screw axes. If  one adopts the convention that 
improper  operations do not make distinct gauge- 
equivalence classes scale-equivalent,* then the 
gauge-equivalence classes in Tables 3 and 4 coincide 
with the space groups, of  which there are 27 in the 
hexagonal  system and 25 (18 on the P lattice and 7 
on the R lattice) in the trigonal system.? 

V. Phase functions for the rank-4 Bravais classes 

The phase functions for the hexagonal  and trigonal 
rank-4 Bravais classes can be read directly from 
Tables 3 and 4, which give them for the periodic 
rank-3 case. This is because both types of  rank-4 
lattices can be constructed by adding to a rank-3 
lattice a fourth primitive generating vector that is 
vertical and therefore either invariant  or changed in 

* This is the convention that takes enantiomorphic pairs of 
space groups to be distinct, giving 230 space groups for periodic 
crystals. 

? If one allows improper operations to establish scale equiva- 
lence, then by taking s to be the inversion i one can establish scale 
equivalence between the gauge-equivalence classes specified by the 

' ~ (and similarly between ~ and ~ and between phases q~,(c) - ~ and 2 . . 1 5 
2 4 and ~). Four of the l l enantiomorphic pairs occur in the 
hexagonal and three in the trigonal crystal systems. 
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Table 3. Phase functions at generating vectors of  the rank-3 P lattice with hexagonal or trigonal point groups 

It is enough to specify the phase functions for the point-group generators and their values ('phases') at the primitive lattice-generating 
vectors. A gauge is used in which all such unspecified phases are zero; the only possible nonzero phases are at the vertical stacking vector 
e. Point groups with identical phase functions are collected together above the same set of  entries. The point groups 62m, 3m, 3m and 32 
are listed in two forms, associated with the two possible orientations of  the twofold axis or vertical mirror. (An m in the second position 
or a 2 in the third position means the plane of  the mirror or the dihedral axis is oriented along the directions of the sixfold star of 
horizontal reciprocal-lattice-generating vectors and their negatives; an m in the third position or a 2 in the second position means the 
orientation is between star vectors.) These phases are given in Table IV of R M R W  (1991). They can also be extracted directly from 
International Tables by noting that a glide plane corresponds to a value of  ~ for the mirror phase function and that an nj screw axis 
corresponds to a value z for the rotation phase function. The phases are gauge-invariant since [ m -  1]e and [ r -  1]c are zero. There are 27 
hexagonal and 18 trigonal classes of phase functions, corresponding to the same number of space groups if one distinguishes between 
enantiomorphic pairs. 

312 
G 6 3 6 622 3 

321 

P h a s e s  Or (e )  

1 G a u g e  
2 Equiva -  g 
3 lence  g 
4 Classes  g 
5 
6 

¢,.(,:) ,I,m(c) 
0 

62rn , ] l m  3 1 m  6 / m  6 r a m  6/mrnm 
6 m 2  3 r n l  3 m l  

,I,.(c) ¢.(c) ¢,.(c) 
0 0 0 
1 1 1 

sign by every point-group operation.* This reduces 
the determination of the rank-4 gauge-equivalence 
classes to a trivial exercise, for the following reasons: 

(1) We require the phase functions at four primi- 
tive generating vectors. We take the fourth to be a 
vertical stacking vector e' and the first three to be a, 
b and either a vertical stacking vector e or a stag- 
gered stacking vector es. The first three together 
generate a rank-3 hexagonal or trigonal lattice and 
the phase functions at those three vectors are con- 
strained by exactly the same conditions that apply in 
the rank-3 case, since no point-group operations mix 
those three with the fourth vector e'. Therefore, the 
phases at the first three vectors can be specified by 
exactly the same entries that appear in Table 3 (for 
the vertical case) or Table 4 (for the staggered case). 

(2) Because the fourth vector e' is either invariant 
or changes sign under every point-group operation, 
no point-group operation mikes it with any of the 
first three generating vectors. Therefore, application 
to the phase functions at e' of the constraints coming 
from the group-compatibility condition (5) and the 
group generating relations yields conditions in which 
only phase functions at e' appear. Furthermore, any 
gauge transformations applied to those phase func- 
tions at e' will only depend on the gauge degree of 
freedom associated with the choice of X(c'), which 
was not used at all in specifying the phases at the 

* This simplification is obscured if one views the SV lattice in its 
-- I I  P setting [JJdW category P31m(~y)], but is obvious from the 

point of view of the R setting [JJdW category R-3m(OOy)]. The 
information we acquire can, of course, be expressed in either 
setting, if we wish to apply it to modulated crystals. 

Table 4. Phase functions at generating vectors of  the 
rank-3 R lattice with trigonal point groups 

A gauge is used in which all unspecified phases are zero. The 
possible nonzero phases are at a staggered stacking vector e~ = e + 
h. These results are given in Table VI of R M R W  (1991). They can 
also be extracted from International Tables, if one notes that a 
glide plane corresponds to a value of  ~ for the mirror phase 
function. The phases associated with m are gauge-invariant since 
[ m -  1]cs = 0. There are seven classes of phase function, corre- 
sponding to seven trigonal space groups on the rank-3 R lattice. 

G 3 3 32 3rn 3ra 

P h a s e s  4 ' re (c , )  

G a u g e  Equ iva l ence  0 
1 Classes  

first three vectors. Determining the additional phases 
at c' is therefore entirely independent of  determining 
them at the first three generating vectors. 

(3) Point (2) also applies to the phase functions at 
e in the rank-3 hexagonal P lattice: they too are 
determined in a manner completely independent of 
how the phase functions are chosen at a and b. 
Therefore, the procedure determining the phase func- 
tions at e' in the rank-4 case is identical to the 
procedure determining the phase functions at e for 
the rank-3 hexagonal lattice, so the rank-4 phases at 
e' are identical to the entries in Table 3 for the 
rank-3 phases at e.* 

* The procedure is so simple that it can easily be applied 
directly to the phases at c', but since the resulting information is 
already in Table 3 it is most  efficient just to read it off. 
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T a b l e  5. Gauge-equivalence classes and space groups o f  rank 4 & the hexagonal system and their settings for 
modulated crystals 

The gauge-equivalence classes are given in part I of the table. They are specified by a set of 'phases': the values of a set of  phase 
functions, one for each point-group generator, at the primitive generating vectors of the lattice. A gauge is used in which all phases 
unspecified in the table are zero. The possible nonzero phases are only at the vertical stacking vectors e.and e' and only associated with 
the sixfold rotation r or the vertical mirror m. As discussed in § V, this part of the table is constructed by simply repeating twice (once for 
e and once for c') the information from Table 3, which gives the gauge-equivalence classes for the corresponding rank-3 periodic 
crystals. There are a total of 117 hexagonal rank-4 gauge-equivalence classes: one for the point group 6, 36 (62) for each of the point 
groups 6 and 622, four (22) for the point group 62m in each of its two settings and for the point group 6/m, and 16 (2 4) for each of the 
point groups 6mm and 6/mmm. 

Part II of the table lists the rank-4 space groups arrived at by identifying scale-equivalent gauge-equivalence classes as described in 
§ VI. Phases characterizing a given space group are on a horizontal row, enclosed in brackets. (The absence of such brackets in part I of  
the table indicates that any selection of  phases, one from each column, gives a distinct gauge-equivalence class.) In all but the fifth case in 
the right-hand column, the phases at the second stacking vector, c', can be taken to be zero. There are a total of 25 rank-4 space groups 
in the hexagonal system. 

Part III of  the table lists the different settings of the space groups in the modulated case, where one singles out the rank-3 sublattice of  
main reflections. We take c to be the generator of the lattice of main reflections and e' to describe a satellite peak. The settings are 
separated vertically into sets that correspond to settings of the general space groups listed in the same order directly above. The 25 
rank-4 general space groups subdivide into 54 settings, which correspond to the 54 JJdW (3 + 1) hexagonal superspace groups. (See 
Janssen et al., 1992, pp. 823-824.) The JJdW symbols for these settings are constructed by taking the letter P - indicating a P sublattice 
of main reflections - followed by the point group, where (as in the usual notation for periodic crystals) the letter m is changed to c if 
q)m(e) = 1/2 and the 6 acquires a subscript j if q~,(c)=j/6. This is followed by (003,) - indicating a vertical (as opposed to staggered) 
generator for the satellite peaks - followed by the phases at c' associated with each of the point-group generators appearing in the 
point-group symbol (in the order they appear in that symbol), where s means 1/2, t means 1/3 and h means 1/6. For example, the three 
settings of the fifth space group for point group 6/mmm (the group of three entries in the extreme lower right of the table) have the JJdW 
symbols P6/mmc(OOT)sO00, P63/mmm(OOT)OOOs and P63/mmc(OOT)sO00. 
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Table  6. Gauge-equivalence classes and space groups 
of rank 4 in the trigonal system Jbr the VV (P+ 1) 
Bravais class and their settings for modulated crystals 

The structure and conventions are the same as for Table 5. Part I, 
taken directly from Table 3, lists 44 gauge-equivalence classes: one 
for the point group 3, nine (32) for the point group 3 and the point 
group 32 in each of its two orientations and four (22 ) for each of 
the two orientations of each of the two point groups 3m and 3m. 
Part II lists the 15 space groups to which these gauge-equivalence 
classes reduce under scale equivalence. In all of these, the phases 
of the second stacking vector, c', can be taken to be zero. Part III 
of the table lists the 25 different settings for these space groups in 
the modulated case. The JJdW superspace symbols are con- 
structed in the same way as specified for the hexagonal space 
groups in the caption of Table 5. 
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These  cons ide ra t ions  enable  us to read  the possible  
values o f  the phase  func t ions  and  hence  the gauge-  
equiva lence  classes for  b o t h  o f  the r ank -4  Bravais  
classes direct ly  f rom Tables  3 and  4 o f  phase  func- 
t ions  for  the o r d i n a r y  rank-3  per iodic  crystals .  F o r  
the lat t ices in the VV (P+ 1) Bravais  class, we s imply  
enter  the i n f o r m a t i o n  f rom Tab le  3 twice, hav ing  a 
c o l u m n  for the values  o f  the nont r iv ia l  phase  func- 
t ions  at  the first s t ack ing  vector  e and  a n o t h e r  ident i-  
cal c o l u m n  repea t ing  the same values tha t  can  
i n d e p e n d e n t l y  be chosen  for  the phase  func t ions  at  
the second s tack ing  vector ,  e ' .  Th i s  is the ent i re  
con ten t  o f  par t s  I o f  Tables  5 and  6. 

F o r  the lat t ices in the SV (R+ 1) Bravais  class, we 
enter  the i n f o r m a t i o n  f rom Tab le  4 for  the possible  
nonze ro  phases  at  the s taggered s t ack ing  vector  es 
and  the i n f o r m a t i o n  f rom Tab le  3 (for the po in t  
g roups  wi th  threefo ld  symmet ry )  for the possible  
nonze ro  phases  at  the vert ical  s t ack ing  vector  c ' .  
This  is the ent i re  con ten t  o f  pa r t  I o f  Tab le  7. 

Par t s  I o f  Tab les  5-7 give all gauge-equiva lence  
classes o f  phase  func t ions  for the r ank-4  hexagona l  
and  t r igona l  systems.  To  de te rmine  the  r ank-4  hex- 
agona l  and  t r igona l  space groups ,  it r emains  on ly  to 

Tab le  7. Gauge-equivalence classes and space groups 
of rank-4 in the trigonal system for the SV (R+ 1) 
Bravais class and their settings for modulated crystals 

The structure and conventions are the same as for Table 5, except 
that (1) the settings for modulated crystals occupy two sections 
because the SV lattice itself has two possible settings and (2) the 
entries in the upper part of the table for the phases at the 
generating vector cs are now the phases for the ordinary rank-3 
space groups on the R lattice, taken from Table 4. Part I of the 
table lists 15 gauge-equivalence classes: one for the point group 3, 
three for each of the point groups 3 and 32 and four (22) for each 
of the two point groups 3m and 3m. Part II lists the nine space 
groups to which these gauge-equivalence classes reduce under 
scale equivalence. In all of these, the phases of the second stacking 
vector, c', can be taken to be zero. Part III of the table lists the 11 
different settings for these space groups in the modulated case 
when the lattice of main reflections is rhombohedral (R settings) 
and part IV lists the 13 different settings in the modulated case 
when the lattice of main reflections is primitive (P settings). The 
numbers differ because in the P setting the scale-equivalence 
transformations are required to preserve the rank-3 P sublattice 
and one therefore loses the freedom to rescale the e' axis so as to 
identify the two enantiomorphic pairs of screw axes. The JJdW 
superspace symbols are constructed in a manner similar to that 
specified for the hexagonal space groups in the caption of Table 5, 
taking R-3m(OOy) for the underlying symbol in the R settings and 
P31m(~ ~y) in the P settings. 
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o [o o] 

1 ' 0]  

2 1 [o 71 

reduce the r e d u n d a n c y  of  this  i n f o r m a t i o n  by 
de t e rmin ing  which  of  these classes are scale- 
equiva lent .  

VI. The hexagonal  and trigonai rank-4 space groups 

The  fu r the r  ident i f ica t ion  of  gauge-equ iva lence  
classes on  the basis  o f  thei r  scale equiva lence  is to 
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some extent a matter of convention,* as already 
noted in the periodic case, where enantiomorphic 
space groups are identified only if improper trans- 
formations s are allowed in the relation (6) between 
scale-equivalent phase functions. We maintain the 
traditional distinction between enantiomorphic pairs 
in the rank-3 case by requiring the transformations s 
to be sense preserving.t 

In §VI.A we describe the general form of the 
transformations s leading to the scale equivalence of 
many of the gauge-equivalence classes in Tables 5-7. 
In § VI.B we describe how the forms of these general 
transformations are restricted if one requires that 
they preserve a rank-3 sublattice, as is useful in 
describing modulated crystals. This leads to different 
settings of the general space groups that correspond 
precisely to the JJdW 'superspace groups'. In § VI.C 
we describe in detail how the general transformations 
of § VI.A lead to the general space groups (given in 
parts II of Tables 5-7) and how the restrictions on 
those transformations in § VI.B lead to the different 
settings of those space groups for modulated crystals 
(given in parts III of Tables 5 and 6 and parts III 
and IV of Table 7). 

A. Scale equivalence & the general case 

VV lattice. We take the primitive vectors c and e' 
each to point in the direction of advance of a right- 
handed screw, rotating through 120 ° from a to b. If 

is a matrix of integers with determinant:]: __ 1 that 
preserves the sense of 

= tC + UC', 
(lO) 

C' =- VC n t- WC', 

then ~ and c' constitute an entirely equivalent pair of 
primitive lattice-generating vectors. The orientation- 
preserving transformation s that scales c into ~ and c' 
into c' therefore leaves the lattice invariant. It 
induces the identity transformation on the point 
group of the lattice and can therefore lead to a scale 
equivalence of distinct gauge-equivalence classes. 

* The convent ion we adop t  is to require there to be a family of  
structures, all with the same rank and point  group,  that inter- 
polates between structures belonging to the original and trans- 
formed gauge-equivalence classes. 

I" We shall find, however,  that in the rank-4 case some distinc- 
tions between 6j (or 3j) screw axes with different values of  j can 
still be lost, jus t  as in the icosahedral case - see Rokhsar ,  Wright 
& Mermin  (1988b). 

:1: To  ensure that its inverse is also a matrix of  integers. 

The transformation (6) on the phases is 

¢P~(-C ) = t flgg( e ) -F uCibg(c'), 
(11) 

,/,~(c') = v,/,~(c)+ w,/,~(c'). 

Two gauge-equivalence classes specified by sets of 
phases related by (11) are scale-equivalent and there- 
fore specify the same space group. 

SV  lattice. We take the same sense convention for 
e' and the vertical part of es and consider the sense- 
preserving transformation of primitive stacking 
vectors c and cs given by 

US = tCs + uc' - (t - 1)h, 
(12) 

C' -" VC s + WC' -- vh ,  

where the matrix of integers (9) again has deter- 
minant _+ 1 and where v and t - 1 are multiples of 3.* 
These restrictions on v and t ensure that the new pair 
of stacking vectors can be obtained from the old pair 
by an orientation-preserving transformation that 
scales c' and the vertical part of c~ into ~ and the 
vertical part of Us. Such a rescaling leaves the lattice 
invariant and induces the identity transformation on 
the point group of the lattice. Since 3h is a vector of 
the horizontal sublattice and since all phase func- 
tions vanish in the horizontal plane, the terms in h 
in (12) drop out of the condition (6) for scale 
equivalence and we have, as in the case of the VV 
lattice, 

~g(C"S) : /(~g(Cs) @ U~g(Ct), 
(13) 

• ~(c') = vq'~(Cs) + wq,~(c'), 

with the additional restriction that v and t - 1  must 
be multiples of 3. 

B. Restricted scale equivalence for modulated crystals 

To further subdivide the general space groups into 
the conventional categories of modulated crystals, we 
need only note that in the modulated case it is 
convenient and conventional to include among the 
lattice-generating vectors a set of three that generate 
the sublattice of main reflections and to restrict the 
transformations that establish scale equivalence to 
those that take this sublattice into itself. In the case 
of the VV lattice, we choose e to generate the lattice 
of main reflections together with a and b. As a result, 
the matrices (9) are acceptable candidates for scale 
equivalence in (11) only if they are of the restricted 
form 

it  v w = + 0] 
In the case of the SV  lattice, the restriction on (12) 
depends on whether the R or P rank-3 sublattice is 

* Note  that 3h is a vector  o f  the horizontal sublattice [see (8)]. 
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taken as the lattice of main reflections. In the former 
case, it is cs that must be preserved and (14) again 
applies (with the restriction that v is a multiple of 3). 
In the latter case, e' must be preserved and we have 

C. Space groups and their settings for  modulated 
crystals 

1. VV  Bravais class 
Case (1). Point groups allowing a glide plane or a 

twofold screw axis, but not both (62m, 6m2, 6/m, 31m, 
3m l, 31m, 3ml). These are the cases in Tables 5 and 
6 for which parts I of the tables give four gauge- 
equivalence classes of phase functions: 

[ ~(C) ] 1 0 I 

where the point-group generator g is either m or r. 
That the third and fourth classes are scale-equivalent 
to the second is established by noting that 

[°11o] [11 o] 
Thus, for each point group, there is just one nonsym- 
morphic space group, as indicated by the corre- 
sponding entries in parts II of Tables 5 and 6. 

To identify the settings of the general space groups 
appropriate to the modulated case, we must restrict 
the matrices in (17) to those of the form (14). The 
first identification in (17) is then prohibited, giving 
two distinct settings for the nonsymmorphic space 
group, as given in parts III of Tables 5 and 6. 

Case (2). Point groups allowing both a glide plane 
and a twofold screw axis (6mm~ 6/mmm). We can now 
make the choice (16) independently both for rp,, and 
q~r, giving 16 distinct gauge-equivalence classes. If (a) 
both mirror phases are zero, (b) both rotational 
phases are zero or (c) the mirror and rotational 
phases are the same, then we can repeat the treat- 
ment in case (1): the three nontrivial gauge- 
equivalence classes in each of the cases (a)-(c) give a 
single nonsymmorphic space group for each point 
group, given by the second, third and fourth entries 
in the right-hand section of part II of Table 5. These 
each have two settings in the modulated case, as 
indicated by the corresponding entries in part III. 

This leaves six gauge-equivalence classes in which 
both phase functions are nonzero but ~/'m is not 
identical to q~r. All six, however, are easily shown to 
be scale equivalent, under transformations of the 

form (17), to the single class* 

[ 1 (18) 

so there is only one additional space group for each 
point group, listed as a fifth entry in part II of 
Table 5. 

These space groups each have three settings in the 
modulated case, where the matrices establishing scale 
equivalence are restricted to the form (14), which 
limits the identifications to those that can be realized 

[1 0 ]  T h e s e a r e g i v e n i n t h e f i f t h  with the matrix 1 1 " 

entry of part III of Table 5. 
Case (3). Point groups allowing a sixfold or three- 

fo ld  screw axis (6, 622, 3, 321, 312). For each point 
1 group, the phase function q~r can have the values 0, ~, 

..., ,~1 independently for each of the stacking vec- 
tors, giving 36 gauge-equivalence classes of phase 
functions when n = 6 and 9 classes when n = 3. 

When n = 6, it can be shown that the 36 classes 
reduce to four under scale equivalence: (1) the single 
symmorphic gauge-equivalence class; (2) any of the 
three nontrivial gauge-equivalence classes in which 
both phases are integral multiples of ~; (3) any of the 
eight nontrivial gauge-equivalence classes in which 
both phases are integral multiples of ~; (4) any of the 
24 remaining gauge-equivalence classes. This follows 
from the fact that, if positive integers t and v are 
relatively prime, then positive integers u and w can 
be found such that t w -  uv = 1. Consequently, 

[10] and [ t v ] = [ ~  u ]  [10] (19) 

are related by a transformation of the form (9) that 
establishes scale equivalence. Since categories (2)-(4) 
have phases that are ½, ½ or ~ times a column vector 
with two relatively prime integers, we can represent 
the four space-group categories by 

as noted in part II of Table 5. 

matrix [0 ;] interchanges the c and c phases reducing 

[l'l 
the number of classes to 3. The matrix then takes 

01 

into , and the matrix takes , 
' 0 l 

[i] into , . 
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To find the settings appropriate to the modulated 
case, we prohibit identifications that change the 
value of q~r(e). This results in two settings in case (2) 
[l~r(C ) ~ 0, 1], three settings in case (3) [l~r(C ) ~ 0, ~, ~] 
and six settings in case (4) [ q~r(e) = 0, ~, ..., ~]. These 
are listed with the values of q~(c') in part III of 
Table 5. 

When n = 3, in just the same way, all eight of the 
nine nontrivial gauge-equivalence classes are scale 
equivalent, but they have three settings in the 
modulated case, as shown in Table 6. 

Note that in the general case the existence of two 
incommensurate c axes results in the inability to 
distinguish between enantiomorphic pairs of screw 
axes. A similar simplification associated with fivefold 
screw axes in icosahedral quasicrystals was pointed 
out in Rokhsar, Wright & Mermin (1988b). 

2. S V  Bravais class 
In establishing scale equivalence of the nonsym- 

morphic space groups, we are now restricted to 
matrices (9) in which v and t - 1  must be multiples 
of 3. 

Case (1). Point groups allowing a glide plane (3m, 
3m). From part I of Table 7, we see that, for each 
point group, there are four gauge-equivalence 
classes, 

[ l~m(Cs) 0 1 1 

Scale equivalence between the three nontrivial ones 
can be established by the transformations 

For each point group, there is therefore just one 
nonsymmorphic space group, as listed in part II of 
Table 7. 

To further subdivide these space groups into the 
settings appropriate to the modulated case, note first 
that there is a general doubling of categories depend- 
ing on whether the sublattice of main reflections is 
taken to be P or R, so that even the symmorphic 
space groups have two different settings. Each non- 
symmorphic space group has four settings: if the 
lattice of main reflections is R then the assignment of 
phases 0 or ½ to cs must be distinguished, while if it is 
P one must distinguish the same two assignments to 
c'. This is indicated in parts III and IV of Table 7. 

Case (2). Point groups allowing a threefold screw 
axis (3, 32). For each point group, there are three 
gauge-equivalence classes, 

[ ] o 

Scale equivalence between the two nontrivial phases 
is established by the transformation 

[iv [01] (24) 

where v is a multiple of 3 large enough to preserve 
the sense of c'. Here too, it is not possible, to 
distinguish between enantiomorphic pairs of space 
groups. 

In the modulated case, there continues to be a 
single nonsymmorphic space group in the R setting, 
but in the P setting the phases of c', ~ and ~, are 
associated with the lattice of main reflections and 
therefore cannot be identified. 

VII. Summary 

Our purpose has been to demonstrate, through the 
example of the trigonal and hexagonal crystal 
systems, that the space groups of rank-4 quasi- 
periodic crystals with crystallographic point groups - 
a class of materials that includes but is not limited to 
(3 + 1) modulated crystals - can be derived by simple 
inspection of the space groups of ordinary periodic 
crystals. 

There are two keys to this simplification: 
(1) Reformulating crystallography in Fourier 

space, to bring it into accord with the new definition 
of crystals as materials whose diffraction patterns 
contain Bragg peaks. 

(2) Refraining until the very last stage of the 
analysis from making crystallographic distinctions 
based on features of Bragg-peak intensities unrelated 
to symmetry. 

The first simplification was advocated 30 years ago 
by Bienenstock & Ewald (1962) as a simpler way to 
derive the space groups of periodic crystals. It brings 
a much more dramatic simplification to the extension 
of this classification to quasiperiodic crystals. 

The second simplification is advocated in Mermin 
& Lifshitz (1992), where a Fourier-space derivation is 
given of the 16 general rank-4 Bravais classes. One 
recovers 24 (3 + 1) settings of these Bravais classes 
that emphasize different rank-3 sublattices of main 
reflections. These are useful in describing modulated 
crystals and are equivalent to the (3+1)  'Bravais 
classes' JJdW derive using the superspace 
approach.* 

Space groups are far more simply expressed in 
terms of the general Bravais classes. There are two 
main reasons for this: 

* Mermin & Lifshitz (1992) give a similar relation between the 
nine general rank-6 cubic Bravais classes and their 14 (3+3) 
settings useful in describing modulated cubic crystals. See also 
Mermin (1992b). 
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(1) Of the 16 general rank-4 Bravais classes, 14 
have lattices that are simply the sum of a rank-3 
crystallographic lattice and a one-dimensional lattice 
that is independently invariant under all point-group 
operations.* As a result, the space groups in all these 
cases can be trivially inferred from the Fourier-space 
forms of the ordinary rank-3 space groups, exactly as 
we have done above for the hexagonal and trigonal 
systems. The (3+ 1) settings of these space groups 
used to describe modulated crystals then emerge 
straightforwardly by the application of a more 
limited set of scale-equivalence transformations to 
the general gauge-equivalence classes. 

(2) By working with a smaller number of Bravais 
classes (16 instead of the 24 settings), one avoids a 
considerable redundancy of both calculation and 
description. 

We emphasize the generality of our approach. By 
first focusing on only the gauge-equivalence classes 
of phase functions, we give the results of the non- 
trivial part of the calculation in a form that applies 
to arbitrary quasiperiodic crystals of the appropriate 
symmetry and rank. By deferring to the end the 
book-keeping question of which space groups to 
further identify through scale equivalence, we retain 
the freedom to use whatever transformations are 
appropriate to the material of interest, making 
straightforward the treatment of materials even when 
they fail to fit neatly into any of the conventional 
categories (modulated crystals, intergrowth com- 
pounds, quasicrystals etc.) and allowing for a unified 
description of materials that might interpolate 
between quite different categories. As a further 
demonstration of the power of the more general 

* There are two exceptions, one in the monoclinic system and 
one in the orthorhombic system. A lattice of either type, however, 
can be viewed as the sum of two two-dimensional lattices, each 
independently invariant under the point-group operations leading 
to a similar simplification. 

approach, we discuss in a companion paper (Lifshitz 
& Mermin, 1994) the Bravais classes and space 
groups of hexagonal and trigonal quasiperiodic crys- 
tals of arbitrary finite rank. 

Whether one chooses to call the categories 
designed for modulated crystals superspace groups 
or different settings of general rank-4 space groups 
is, of course, a nomenclatural question; but that 
these categories are more easily used and derived 
from the latter point of view seems to us indispu- 
table. 

This work was supported by the National Science 
Foundation through grants DMR 89-20979 and 
DMR 92-22792. 
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Abstract 

To demonstrate the power of the Fourier-space 
approach to crystallography, the Bravais classes and 
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space groups of hexagonal and trigonal quasiperio- 
dic crystals are derived for lattices of arbitrary finite 
rank. The specification of the space groups for each 
Bravais class is given by an elementary extension of 
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